Purification and Characterization of the Bifunctional Enzyme Lysine-Ketoglutarate Reductase-Saccharopine Dehydrogenase from Maize.
نویسندگان
چکیده
The first enzyme of the lysine degradation pathway in maize (Zea mays L.), lysine-ketoglutarate reductase, condenses lysine and [alpha]-ketoglutarate into saccharopine using NADPH as a cofactor, whereas the second, saccharopine dehydrogenase, converts saccharopine to [alpha]-aminoadipic-[delta]-semialdehyde and glutamic acid using NAD+ or NADP+ as a cofactor. The reductase and dehydrogenase activities are optimal at pH 7.0 and 9.0, respectively. Both enzyme activities, co-purified on diethylaminoethyl-cellulose and gel filtration columns, were detected on nondenaturing polyacrylamide gels as single bands with identical electrophoretic mobilities and share tissue specificity for the endosperm. The highly purified preparation containing the reductase and dehydrogenase activities showed a single polypeptide band of 125 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native form of the enzyme is a dimer of 260 kD. Limited proteolysis with elastase indicated that lysine-ketoglutarate reductase and saccharopine dehydrogenase from maize endosperm are located in two functionally independent domains of a bifunctional polypeptide.
منابع مشابه
Purification and characterization of bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase from developing soybean seeds.
Both in mammals and plants, excess lysine (Lys) is catabolized via saccharopine into alpha-amino adipic semialdehyde and glutamate by two consecutive enzymes, Lys-ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH), which are linked on a single bifunctional polypeptide. To study the control of metabolite flux via this bifunctional enzyme, we have purified it from developing soybe...
متن کاملRegulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis.
In plant and mammalian cells, excess lysine is catabolized by a pathway that is initiated by two enzymes, namely, lysine-ketoglutarate reductase and saccharopine dehydrogenase. In this study, we report the cloning of an Arabidopsis cDNA encoding a bifunctional polypeptide that contains both of these enzyme activities linked to each other. RNA gel blot analysis identified two mRNA bands-a large ...
متن کاملLysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse.
Lysine-oxoglutarate reductase and saccharopine dehydrogenase are enzymic activities that catalyse the first two steps of lysine degradation through the saccharopine pathway in upper eukaryotes. This paper describes the isolation and characterization of a cDNA clone encoding a bifunctional enzyme bearing domains corresponding to these two enzymic activities. We partly purified those activities f...
متن کاملPartial purification and characterization of lysine-ketoglutarate reductase in normal and opaque-2 maize endosperms.
Lysine-ketoglutarate reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses l-lysine and alpha-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and there-after decreasing...
متن کاملLysine-ketoglutarate reductase activity in developing maize endosperm.
Lysine-ketoglutarate reductase activity was detected and characterized in the developing endosperm of maize (Zea mays L.). The enzyme showed specificity for its substrates: lysine, alpha-ketoglutarate, and NADPH. Formation of the reaction product saccharopine was demonstrated. The pH optimum of the enzyme was close to 7, and the K(m) for lysine and alpha-ketoglutarate were 5.2 and 1.8 millimola...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 110 3 شماره
صفحات -
تاریخ انتشار 1996